Galileo Computing < openbook > Galileo Computing - Professionelle Bücher. Auch für Einsteiger.
Professionelle Bücher. Auch für Einsteiger

 << zurück
Java ist auch eine Insel von Christian Ullenboom
Programmieren für die Java 2-Plattform in der Version 5
Java ist auch eine Insel

Java ist auch eine Insel
5., akt. und erw. Auflage
1454 S., mit CD, 49,90 Euro
Galileo Computing
ISBN 3-89842-747-1
gp Kapitel 6 Eigene Klassen schreiben
  gp 6.1 Eigene Klassen definieren
    gp 6.1.1 Methodenaufrufe und Nebeneffekte
    gp 6.1.2 Argumentübergabe mit Referenzen
    gp 6.1.3 Die this-Referenz
    gp 6.1.4 Überdeckte Objektvariablen nutzen
  gp 6.2 Assoziationen zwischen Objekten
    gp 6.2.1 Gegenseitige Abhängigkeiten von Klassen
  gp 6.3 Privatsphäre und Sichtbarkeit
    gp 6.3.1 Wieso nicht freie Methoden und Variablen für alle?
    gp 6.3.2 Privat ist nicht ganz privat: Es kommt darauf an, wer’s sieht
    gp 6.3.3 Zugriffsmethoden für Attribute definieren
  gp 6.4 Statische Methoden und statische Attribute
    gp 6.4.1 Warum statische Eigenschaften sinnvoll sind
    gp 6.4.2 Statische Eigenschaften mit static
    gp 6.4.3 Statische Eigenschaften über Referenzen nutzen?
    gp 6.4.4 Warum die Groß- und Kleinschreibung wichtig ist
    gp 6.4.5 Statische Eigenschaften und Objekteigenschaften
    gp 6.4.6 Statische Variablen zum Datenaustausch
    gp 6.4.7 Statische Blöcke als Klasseninitialisierer
  gp 6.5 Konstanten und Aufzählungen
    gp 6.5.1 Konstanten über öffentliche statische final-Variablen
    gp 6.5.2 Problem mit finalen Klassenvariablen
    gp 6.5.3 Typsicherere Konstanten
    gp 6.5.4 Aufzählungen mit enum in Java 5
    gp 6.5.5 enum-Konstanten in switch
  gp 6.6 Objekte anlegen und zerstören
    gp 6.6.1 Konstruktoren schreiben
    gp 6.6.2 Einen anderen Konstruktor der gleichen Klasse aufrufen
    gp 6.6.3 Initialisierung der Objekt- und Klassenvariablen
    gp 6.6.4 Finale Werte im Konstruktor und in statischen Blöcken setzen
    gp 6.6.5 Exemplarinitialisierer (Instanzinitialisierer)
    gp 6.6.6 Zerstörung eines Objekts durch den Müllaufsammler
    gp 6.6.7 Implizit erzeugte String-Objekte
    gp 6.6.8 Private Konstruktoren, Utility-Klassen, Singleton und Fabriken
  gp 6.7 Vererbung
    gp 6.7.1 Vererbung in Java
    gp 6.7.2 Einfach- und Mehrfachvererbung
    gp 6.7.3 Gebäude modelliert
    gp 6.7.4 Konstruktoren in der Vererbung
    gp 6.7.5 Sichtbarkeit protected
    gp 6.7.6 Das Substitutionsprinzip
    gp 6.7.7 Automatische und explizite Typanpassung
    gp 6.7.8 Typen testen mit dem binären Operator instanceof
    gp 6.7.9 Array-Typen und Kovarianz
    gp 6.7.10 Methoden überschreiben
    gp 6.7.11 Mit super eine Methode der Oberklasse aufrufen
    gp 6.7.12 Kovariante Rückgabetypen
    gp 6.7.13 Finale Klassen
    gp 6.7.14 Nicht überschreibbare Funktionen
    gp 6.7.15 Zusammenfassung zur Sichtbarkeit
    gp 6.7.16 Sichtbarkeit in der UML
    gp 6.7.17 Zusammenfassung: Konstruktoren und Methoden
  gp 6.8 Object ist die Mutter aller Oberklassen
    gp 6.8.1 Klassenobjekte
    gp 6.8.2 Objektidentifikation mit toString()
    gp 6.8.3 Objektgleichheit mit equals() und Identität
    gp 6.8.4 Klonen eines Objekts mit clone()
    gp 6.8.5 Hashcodes
    gp 6.8.6 Aufräumen mit finalize()
    gp 6.8.7 Synchronisation
  gp 6.9 Die Oberklasse gibt Funktionalität vor
    gp 6.9.1 Dynamisches Binden als Beispiel für Polymorphie
    gp 6.9.2 Keine Polymorphie bei privaten, statischen und finalen Methoden
    gp 6.9.3 Polymorphie bei Konstruktoraufrufen
  gp 6.10 Abstrakte Klassen und abstrakte Methoden
    gp 6.10.1 Abstrakte Klassen
    gp 6.10.2 Abstrakte Methoden
  gp 6.11 Schnittstellen
    gp 6.11.1 Ein Polymorphie-Beispiel mit Schnittstellen
    gp 6.11.2 Die Mehrfachvererbung bei Schnittstellen
    gp 6.11.3 Erweitern von Interfaces – Subinterfaces
    gp 6.11.4 Vererbte Konstanten bei Schnittstellen
    gp 6.11.5 Vordefinierte Methoden einer Schnittstelle
    gp 6.11.6 Abstrakte Klassen und Schnittstellen im Vergleich
    gp 6.11.7 CharSequence als Beispiel einer Schnittstelle
    gp 6.11.8 Die Schnittstelle Iterable
  gp 6.12 Innere Klassen
    gp 6.12.1 Statische innere Klassen und Schnittstellen
    gp 6.12.2 Mitglieds- oder Elementklassen
    gp 6.12.3 Lokale Klassen
    gp 6.12.4 Anonyme innere Klassen
    gp 6.12.5 this und Vererbung
    gp 6.12.6 Implementierung einer verketteten Liste
    gp 6.12.7 Funktionszeiger
  gp 6.13 Generische Datentypen
    gp 6.13.1 Einfache Klassenschablonen
    gp 6.13.2 Einfache Methodenschablonen
    gp 6.13.3 Umsetzen der Generics, Typlöschung und Raw-Types
    gp 6.13.4 Einschränken der Typen
    gp 6.13.5 Generics und Vererbung, Invarianz
    gp 6.13.6 Wildcards
  gp 6.14 Die Spezial-Oberklasse Enum
    gp 6.14.1 Methoden auf Enum-Objekten
    gp 6.14.2 enum mit eigenen Konstruktoren und Methoden
  gp 6.15 Dokumentationskommentare mit javaDoc
    gp 6.15.1 Einen Dokumentationskommentar setzen
    gp 6.15.2 Mit javadoc eine Dokumentation erstellen
    gp 6.15.3 HTML-Tags in Dokumentationskommentaren
    gp 6.15.4 Generierte Dateien
    gp 6.15.5 Weitere Dokumentationskommentare
    gp 6.15.6 javaDoc und Doclets
    gp 6.15.7 Veraltete (deprecated) Klassen, Konstruktoren und Methoden


Galileo Computing

6.10 Abstrakte Klassen und abstrakte Methodedowntop

Nicht immer soll eine Klasse sofort ausprogrammiert werden. Dies ist der Fall, wenn die Oberklasse lediglich Methoden für die Unterklassen vorgeben möchte, aber nicht weiß, wie sie diese implementieren soll. In Java gibt es dazu zwei Konzepte: abstrakte Klassen und Schnittstellen (engl. interfaces).


Galileo Computing

6.10.1 Abstrakte Klassen  downtop

Bisher haben wir Vererbung eingesetzt, und jede Klasse konnte Objekte bilden. Das ist allerdings nicht immer sinnvoll, nämlich genau dann, wenn eine Klasse nur in einer Vererbungshierarchie existieren soll. Sie kann dann als Modellierungsklasse eine Ist-eine-Art-von-Beziehung ausdrücken und Signaturen für die Unterklassen vorgeben. Eine Oberklasse besitzt dabei Vorgaben für die Unterklasse, das heißt, alle Unterklassen erben die Methoden. Ein Exemplar der Oberklasse selbst muss nicht existieren.

Um das in Java auszudrücken, setzen wir den Modifizierer abstract an die Typdefinition der Oberklasse. Von dieser Klasse können dann keine Exemplare gebildet werden. Ansonsten verhalten sich die abstrakten Klassen wie normale, sie enthalten die gleichen Eigenschaften und können auch selbst von anderen Klassen erben. Abstrakte Klassen sind das Gegenteil von konkreten Klassen.

Wir wollen die Klasse Gebaeude als Oberklasse für konkrete Gebäude abstrakt machen.

Listing 6.56   vb/Gebaeude.java

package vb;
  abstract   class Gebaeude
{
  private int quadratmeter;
  public int getQuadratmeter()
  {
    return quadratmeter;
  }
  protected void setQuadratmeter( int qm )
  {
    quadratmeter = qm;
  }
}

Mit dieser abstrakten Klasse Gebaeude drücken wir aus, dass es eine allgemeine Klasse ist, zu der keine konkreten Objekte existieren. Es gibt in der realen Welt schließlich keine allgemeinen und unspezifizierten Gebäude, sondern nur spezielle Unterarten von Gebäuden, zum Beispiel Diskotheken, Kirchen und so weiter. Es ergibt also keinen Sinn, ein Exemplar der Klasse Gebaeude zu bilden. Die Klasse soll nur in der Hierarchie auftauchen, um alle konkreten Kleidungsklassen als Typ von Gebaeude darzustellen. Das zeigt, dass Oberklassen allgemeiner gehalten sind und Unterklassen weiter spezialisieren. Ein Versuch, ein Objekt der abstrakten Klasse zu bilden, führt zu einem Compilerfehler.

Abbildung
Hier klicken, um das Bild zu Vergrößern

Abbildung 6.7   In der UML werden abstrakte Klassennamen kursiv gesetzt

Die abstrakten Klassen werden normal in der Vererbung eingesetzt. Eine Klasse kann die abstrakte Klasse erweitern und auch selbst wieder abstrakt sein.

Das heißt, jemand könnte problemlos schreiben:

Disko      d1     = new Disko();
Gebaeude   d2     = new Disko();
Object     d3     = new Disko();
Gebaeude[] diskos = new Gebaeude[]{ new Disko()new Disko() };

Galileo Computing

6.10.2 Abstrakte Methoden  toptop

Das Schlüsselwort abstract leitet die Definition einer abstrakten Klasse ein. Eine Klasse kann ebenso abstrakt sein wie eine Methode. Eine abstrakte Methode definiert lediglich die Signatur, und eine Unterklasse implementiert dann irgendwann diese Methode. Die Klasse ist dann nur für den Kopf der Methode zuständig, während die Implementierung an anderer Stelle erfolgt. Durch abstrakte Methoden wird ausgedrückt, dass die Oberklasse keine Ahnung von der Implementierung hat und dass sich die Unterklassen darum kümmern müssen.

Erinnern wir uns an das Gebäude, das mit getTyp() eine Kennung liefern konnte. Wir haben damals für unbekannte Gebäude den Typ UNDEFINIERT vorgegeben. Doch schön ist das nicht! Es wäre viel angenehmer, wenn das Gebäude die Methode getTyp() abstrakt definieren würde. Dann könnten wir die Unterklassen – von denen wir Disko und Kirche definiert hatten – dazu auffordern, die Funktion zu überschreiben, damit sich konkrete Exemplare bilden lassen.

Listing 6.57   vc/Gebaeude.java

package vc;
public   abstract   class Gebaeude
{
  public   abstract   GebaeudeTyp getTyp();
}

Die Definition einer abstrakten Methode wird mit einem Semikolon abgeschlossen.

Abbildung
Hier klicken, um das Bild zu Vergrößern

Abbildung 6.8   Auch abstrakte Methoden werden in UML kursiv gesetzt.

Ist mindestens eine Methode abstrakt, so ist es automatisch die ganze Klasse. Deshalb müssen wir das Schlüsselwort abstract ausdrücklich vor den Klassennamen schreiben. Vergessen wir das Schlüsselwort abstract bei einer solchen Klasse, erhalten wir einen Compilerfehler. Eine Klasse mit einer abstrakten Methode muss abstrakt sein, da sonst irgendjemand ein Exemplar konstruieren und genau diese Methode aufrufen könnte.

Versuchen wir, ein Exemplar einer abstrakten Klasse zu erzeugen, so bekommen wir ebenfalls einen Compilerfehler. Auch ein indirekter Weg über die Class-Methode newInstance() bringt uns nicht zum Ziel, sondern nur eine InstantiationException ein.

Vererben von abstrakten Methoden

Wenn wir von einer Klasse abstrakte Methoden erben, so haben wir zwei Möglichkeiten:

1. Wir überschreiben alle abstrakten Methoden und implementieren sie. Dann muss die Unterklasse nicht mehr abstrakt sein (wobei sie es auch weiterhin sein kann). Von der Unterklasse kann es ganz normale Exemplare geben.
       
2. Wir überschreiben die abstrakte Methode nicht, sodass sie normal vererbt wird. Das bedeutet: Eine abstrakte Methode bleibt in unserer Klasse, und die Klasse muss wiederum abstrakt sein.
       

Die Unterklasse Disko überschreibt die abstrakte Methode und nimmt das Abstrakte weg.

Listing 6.58   vc/Disko.java

package vc;
public class Disko extends Gebaeude
{
  @Override
  public GebaeudeTyp getTyp()
  {
    return GebaeudeTyp.GASTSTAETTE;
  }
}

Eclipse

Implementiert eine Klasse nicht alle geerbten abstrakten Methoden, so muss die Klasse selbst wieder abstrakt sein. Eclipse bietet uns mit (Strg)+(1) an, entweder die Klasse abstrakt zu machen, oder alle geerbten abstrakten Methoden mit einem Dummy-Rumpf zu implementieren.

Abbildung
Hier klicken, um das Bild zu Vergrößern

 << zurück




Copyright © Galileo Press GmbH 2005
Für Ihren privaten Gebrauch dürfen Sie die Online-Version natürlich ausdrucken. Ansonsten unterliegt das <openbook> denselben Bestimmungen, wie die gebundene Ausgabe: Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.


[Galileo Computing]

Galileo Press GmbH, Rheinwerkallee 4, 53227 Bonn, Tel.: 0228.42150.0, Fax 0228.42150.77, info@galileo-press.de