Galileo Computing < openbook > Galileo Computing - Professionelle Bücher. Auch für Einsteiger.
Professionelle Bücher. Auch für Einsteiger

 << zurück
Java ist auch eine Insel von Christian Ullenboom
Programmieren für die Java 2-Plattform in der Version 5
Java ist auch eine Insel

Java ist auch eine Insel
5., akt. und erw. Auflage
1454 S., mit CD, 49,90 Euro
Galileo Computing
ISBN 3-89842-747-1
gp Kapitel 11 Datenstrukturen und Algorithmen
  gp 11.1 Datenstrukturen und die Collection-API
    gp 11.1.1 Die Schnittstelle Collection
    gp 11.1.2 Das erste Programm mit Container-Klassen
    gp 11.1.3 Die Schnittstelle Iterable und das erweiterte for
    gp 11.1.4 Generische Datentypen in der Collection-API
    gp 11.1.5 Generischer Typ bei Iterable und konkreter Typ beim erweiterten for
    gp 11.1.6 Schnittstellen, die Collection erweitern, und Map
    gp 11.1.7 Konkrete Container-Klassen
  gp 11.2 Mit einem Iterator durch die Daten wandern
    gp 11.2.1 Die Schnittstellen Enumeration und Iterator
    gp 11.2.2 Der typisierte Iterator
  gp 11.3 Listen
    gp 11.3.1 Die Schnittstelle List
    gp 11.3.2 Beispiel mit List-Methoden
    gp 11.3.3 ArrayList
    gp 11.3.4 Arrays.asList() und die »echten« Listen
    gp 11.3.5 toArray() von Collection verstehen – die Gefahr einer Falle erkennen
    gp 11.3.6 Die interne Arbeitsweise von ArrayList und Vector
    gp 11.3.7 LinkedList
  gp 11.4 Stack (Kellerspeicher, Stapel)
    gp 11.4.1 Die Methoden von Stack
    gp 11.4.2 Ein Stack ist ein Vector – aha!
  gp 11.5 Queues (Schlangen)
    gp 11.5.1 Blockierende Queues und Prioritätswarteschlangen
  gp 11.6 Assoziative Speicher HashMap und TreeMap
    gp 11.6.1 Ein Objekt der Klasse HashMap erzeugen
    gp 11.6.2 Einfügen und Abfragen der Datenstruktur
    gp 11.6.3 Wichtige Eigenschaften von Assoziativspeichern
    gp 11.6.4 Elemente im Assoziativspeicher müssen unveränderbar bleiben
    gp 11.6.5 Aufzählen der Elemente
    gp 11.6.6 Der Gleichheitstest, Hash-Wert und Klon einer Hash-Tabelle
    gp 11.6.7 Die Arbeitsweise einer Hash-Tabelle
  gp 11.7 Die Properties-Klasse
    gp 11.7.1 Properties setzen und lesen
    gp 11.7.2 Properties verketten
    gp 11.7.3 Eigenschaften ausgeben
    gp 11.7.4 Hierarchische Eigenschaften
    gp 11.7.5 Properties speichern
    gp 11.7.6 Über die Beziehung Properties und Hashtable
  gp 11.8 Mengen (Sets)
    gp 11.8.1 HashSet
    gp 11.8.2 TreeSet – die Menge durch Bäume
    gp 11.8.3 LinkedHashSet
  gp 11.9 Algorithmen in Collections
    gp 11.9.1 Datenmanipulation: Umdrehen, Füllen, Kopieren
    gp 11.9.2 Vergleichen von Objekten mit Comparator und Comparable
    gp 11.9.3 Größten und kleinsten Wert einer Collection finden
    gp 11.9.4 Sortieren
    gp 11.9.5 Elemente in der Collection suchen
    gp 11.9.6 Nicht-änderbare Datenstrukturen
    gp 11.9.7 nCopies()
    gp 11.9.8 Singletons
  gp 11.10 Synchronisation der Datenstrukturen
    gp 11.10.1 Lock-Free-Algorithmen aus java.util.concurrent
    gp 11.10.2 Wrapper zur Synchronisation
    gp 11.10.3 CopyOnWriteArrayList und CopyOnWriteArraySet
  gp 11.11 Die abstrakten Basisklassen für Container
    gp 11.11.1 Optionale Methoden
  gp 11.12 Die Klasse BitSet für Bitmengen
    gp 11.12.1 Ein BitSet anlegen und füllen
    gp 11.12.2 Mengenorientierte Operationen
    gp 11.12.3 Funktionsübersicht
    gp 11.12.4 Primzahlen in einem BitSet verwalten
  gp 11.13 Ein Design-Pattern durch Beobachten von Änderungen
    gp 11.13.1 Design-Pattern
    gp 11.13.2 Das Beobachter-Pattern (Observer/Observable)


Galileo Computing

11.4 Stack (Kellerspeicher, Stapel)  downtop

Die Klasse Stack repräsentiert einen Stapelspeicher, auch »Keller« genannt, der als LIFO (Last-In-First-Out)-Datenstruktur bekannt ist. Beim Hinzufügen von Elementen wächst die Datenstruktur dynamisch. Die Klasse Stack ist eine Erweiterung der Klasse Vector – wir diskutieren später noch diese prickelnde Designentscheidung –, womit die Klasse zusätzliche Funktionalität besitzt, beispielsweise die Fähigkeit der Aufzählung und des wahlfreien Zugriffs auf Kellerelemente.


Beispiel   Füge in den Stack zwei Strings ein und lies sie wieder aus.
Stack<String> s = new Stack<String>();
  s.push  ( "Roujitcher" );
  s.push  ( "Tatjana" );
String s1 =   s.pop()  ;
String s2 =   s.pop()  ;


Galileo Computing

11.4.1 Die Methoden von Stack  downtop

Stack besitzt nur wenige zusätzliche Methoden, verglichen mit dem Vektor.


class java.util.  Stack<E>
  extends Vector<E>

gp  Stack() Der Konstruktor erzeugt einen neuen Stack.
gp  boolean empty() Testet, ob Elemente auf dem Stapel vorhanden sind.
gp  E push( E item ) Das Element item wird auf den Stapel gebracht.
gp  E pop() Holt das letzte Element vom Stapel. EmptyStackException signalisiert einen leeren Stapel.
gp  E peek() Das oberste Element wird nur vom Stapel gelesen, aber nicht wie bei pop() entfernt. Bei leerem Stapel wird eine EmptyStackException ausgelöst.
gp  int search( Object o ) Sucht im Stapel nach dem obersten Eintrag, der mit dem Objekt o übereinstimmt. Gibt den Index zurück oder –1, falls das Objekt nicht im Stapel ist. 1 bedeutet, dass der gesuchte Eintrag ganz oben auf dem Stapelspeicher liegt, 2 bezeichnet die zweitoberste Position und so weiter. Die Zählweise ist ungewöhnlich, da sie nicht nullbasiert ist wie alle anderen Funktionen, die mit Positionen arbeiten.

Hinweis   Exceptions von Stack. Im Gegensatz zu Vector kann Stack die Exception EmptyStackException erzeugen, um einen leeren Stapel zu signalisieren. Durch einen Rückgabewert null ist ein Fehlschlag nicht angezeigt, da null ein gültiger Rückgabewert sein kann.


Galileo Computing

11.4.2 Ein Stack ist ein Vector – aha!  toptop

Eine genaue Betrachtung der Klasse Stack zeigt den unsinnigen und falschen Einsatz der Vererbung. Stack erbt alle Methoden von Vector und damit viele Funktionen, die im krassen Gegensatz zu den charakteristischen Eigenschaften eines Stapels stehen. Dazu zählen unter anderem die Methoden elementAt(), indexOf(), insertElementAt(), removeElementAt(), setElementAt() und weitere.

Abbildung
Hier klicken, um das Bild zu Vergrößern

Für eine Änderung ist es aber nun aufgrund der Wahrung der Abwärtskompatibilität zu spät, und die Implementierung bleibt. Sie hätte mit einem internen Vector oder einer ähnlichen Datenstruktur erfolgen müssen. Bleibt die Frage, warum sich der Autor Jonathan Payne für jene Variante entschieden hat. Aus Sicht der Softwaretechnik ist die Frage leicht zu beantworten. Hier stehen sich Kaufen (Delegation oder Komposition, also Verwenden eines Objekts) oder Erben (also Erweitern einer Klasse) gegenüber. Wenn eine Unterklasse nicht bedingungslos alle Eigenschaften der Oberklasse unterstützt, ist Vererbung falsch angewendet. In einem Konflikt zwischen Kaufen und Erben sollte immer Kaufen statt Erben eingesetzt werden. Im Übrigen ist Jonathan Payne auch Autor der Klasse Vector.

 << zurück




Copyright © Galileo Press GmbH 2005
Für Ihren privaten Gebrauch dürfen Sie die Online-Version natürlich ausdrucken. Ansonsten unterliegt das <openbook> denselben Bestimmungen, wie die gebundene Ausgabe: Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.


[Galileo Computing]

Galileo Press GmbH, Rheinwerkallee 4, 53227 Bonn, Tel.: 0228.42150.0, Fax 0228.42150.77, info@galileo-press.de